Properties of Shapes: Vertically Opposite Angles

Aim:
Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
To recognise angles which are vertically opposite and find missing angles.

Success Criteria:

I know that vertically opposite angles are equal. I can find vertically opposite missing angles.

Key/New Words:

Degree, acute, obtuse, reflex, vertically opposite, congruent.

Resources:

Lesson Pack
Individual Whiteboards

Preparation:

Differentiated Vertically Opposite Angles
Activity Sheets - one per child
Extra Challenge Activity Sheet - as required
Angle Challenge Resource Sheet - one per pair
Diving Into Mastery activity sheets - as required

Prior Learning: It will be helpful if children have calculated missing angles on a straight line and one whole turn previously.

Learning Sequence

Vertically Opposite Angles: Using the images and information displayed on the Lesson Presentation,
demonstrate that when two straight lines intersect, four angles are created. Explain that the pairs of angles which are
opposite each other are congruent (equal) and known as vertically opposite angles.

recording their estimation on individual whiteboards.

Exploreit

2D Shapeit: Explore concave and convex 2D shapes and their angles.
Debateit: Hold a class debate discussing why we need to learn about angles and how we use them in our everyday lives.
Treasure Mapit: Create a class treasure map and write directions using angles to locate the treasure.

Maths

Properties of Shapes

Vertically Opposite Angles

Regent Studies | www.regentstudies.com

Aim

- To recognise angles which are vertically opposite and find missing angles.

Success Criteria

- I know that vertically opposite angles are equal.
- I can find vertically opposite missing angles.

Estimating Angles 2

Estimate in degrees the size of this angle:

138°

Estimating Angles 2

Estimate in degrees the size of this angle:

216°

Estimating Angles 2

Estimate in degrees the sizes of these angles:

Estimating Angles 2

Estimate in degrees the sizes of these angles:

Vertically Opposite Angles

When two straight lines intersect (cross each other), four angles are created around a point which total 360°.

Vertically Opposite Angles

The pairs of angles that are opposite each other measure the same number of degrees and are equal (congruent).

These pairs of angles are called vertically opposite angles.

Missing Angles

Identify these missing angles using vertically opposite angle facts:

Have you noticed that adjacent angles are on a straight line and total 180° ?

Missing Angles

Calculate the missing angles using known angle facts:

Vertically Opposite Missing Angles \because

Diving into Mastery

Dive in by completing your own activity!

Angle Challenge

Label and calculate the missing angles.

Aim

- To recognise angles which are vertically opposite and find missing angles.

Success Criteria

- I know that vertically opposite angles are equal.
- I can find vertically opposite missing angles.

Regent Studies| www.regentstudies.com

Angle Challenge

Label and calculate the missing angles.

Vertically Opposite Angles

I can find unknown angles which are vertically opposite.

Calculate the missing angles:

3.

Vertically Opposite Angles

I can find unknown angles which are vertically opposite.

Calculate the missing angles:

5.

Vertically Opposite Angles

I can find unknown angles which are vertically opposite.

Calculate the missing angles:

Question 1.	Answer		Question 5.	Answer	
	$a=140^{\circ}$	$b=40^{\circ}$		$a=100^{\circ}$	$b=80^{\circ}$
2.	$b=120^{\circ}$	$\mathrm{c}=60^{\circ}$	6.	$b=160^{\circ}$	$\mathrm{c}=20^{\circ}$
3.	$a=50^{\circ}$	$d=130^{\circ}$	7.	$a=70^{\circ}$	$d=110^{\circ}$
4.	$\mathrm{c}=150^{\circ}$	$d=30^{\circ}$	8.	$\mathrm{c}=10^{\circ}$	$d=170^{\circ}$

Question	Answer		Question	Answer	
1.	$a=105^{\circ}$	$b=75^{\circ}$	5.	$a=15^{\circ}$	$\mathrm{b}=165^{\circ}$
2.	$\mathrm{b}=25^{\circ}$	$\mathrm{c}=155^{\circ}$	6.	$\mathrm{b}=125^{\circ}$	$c=55^{\circ}$
3.	$a=45^{\circ}$	$d=135^{\circ}$	7.	$\mathrm{a}=115^{\circ}$	$d=65^{\circ}$
4.	$c=85^{\circ}$	$d=95^{\circ}$	8.	$b=35^{\circ}$	$d=145^{\circ}$

Question	Answer		Question	Answer	
1.	$a=124^{\circ}$	$b=56^{\circ}$	5.	$a=13^{\circ}$	$b=167^{\circ}$
2.	$a=104^{\circ}$	$b=76^{\circ}$	6.	$b=155^{\circ}$	$c=25^{\circ}$
3.	$a=64^{\circ}$	$d=116^{\circ}$	7.	$a=64^{\circ}$	$d=116^{\circ}$
4.	$c=96^{\circ}$	$d=84^{\circ}$	8.	$c=46^{\circ}$	$d=134^{\circ}$

1) False

True
True
False
True
True
2) a) angle $b=125^{\circ}$
angle $c=55^{\circ}$
b) angle $d=142^{\circ}$
angle $e=38^{\circ}$
c) angle $f=158^{\circ}$
d) angle $g=40^{\circ}$ angle $h=40^{\circ}$ angle $\boldsymbol{j}=37^{\circ}$ angle $k=103^{\circ}$

1) $p=42^{\circ}$
$x=48^{\circ}$
$z=138^{\circ}$
2) Mia's strategy would not work. Angles a and d are equal as they are opposite angles. She could work out angle e as $e+a=180^{\circ}$, however her method would still leave angles b and c unknown.

Surinder's strategy would work. By revealing angle d, he would be able to calculate the value of angle e as angles $d+e=180^{\circ}$. By revealing angle d, he would also know the value of the equal, opposite angle a. If he then knows angle c, he would be able to calculate the value of the only remaining angle, angle b.
3) Dara is incorrect. Angle z is not actually vertically opposite the 84° angle so this strategy will not work.

Conor is correct. By adding the 90° angle and the 42° together and then subtracting the result from 180°, we find that angle z measures 48°.

1) angle $x=51^{\circ}$
angle $y=39^{\circ}$
angle $z=95^{\circ}$
2) $a=77^{\circ}$
$b=77^{\circ}$
$c=96^{\circ}$
$d=96^{\circ}$
$e=55^{\circ}$
$f=46^{\circ}$
$g=93^{\circ}$
3) a) The fewest number of angles that would need to be measured with a protractor would be two angles (either the angle between red and yellow or purple and yellow and the angle between black and purple or black and red). The others could then be calculated.
b) As there are four angles that make up a straight line, you would need to measure three angles. Once you know the three angles on a straight line, you could use the fact that opposite angles are the same to work out the rest of the angles around the point.
4) True or false? Tick the box next to each statement if it is true or cross it if it is false.
\square Angles a and b are equal.
$\square d+a=180^{\circ}$Angles b and d are equal.
$c+a=180^{\circ}$
Angles a and c are equal.
$a+b+c+d=360^{\circ}$

5) Use what you know about vertically opposite angles, angles on a straight line and angles around a point to help you calculate each angle represented by a letter.

b) not drawn to scale

$d=$ \qquad
$e=$ \qquad
c) not drawn to scale

$$
f=
$$

\qquad

1) Angle y is 42°. Use this fact to work out all the remaining angles.
$p=$ \qquad
$x=$ \qquad
$z=$ \qquad

2) Mia and Surinder are given a challenge by their teacher.

One at a time, choose to reveal the size of one angle until you are able to calculate the value of all of the remaining angles in the diagram.

Is either child correct? Explain your answer below. If you would like to explain using a diagram, please use an additional sheet of paper.
\qquad
\qquad
\qquad
3) Dara and Conor each think of a different strategy to find angle z. Whose strategy will work? Whose won't? Explain your answer fully.

Dara, "As I know that vertically opposite angles are equal, I think that angle z must equal 84°."

Conor, "I disagree with Dara. I think that because angles on a straight line measure 180°, angle z measures 48°."

1) Calculate the missing angles.

2) Calculate the value of each angle represented by a letter.
$a=$ \qquad
$b=$ \qquad
$c=$ \qquad
$d=$ \qquad
$e=$ \qquad
$f=$ \qquad
$g=$ \qquad
3) In each drawing below, there are four straight lines that meet at a point.

For each drawing, what is the fewest number of angles you need to measure with a protractor before you are able to use what you know about vertically opposite angles, angles on a straight line and angles around a point to help you calculate the value of the remaining angles? Prove it!
a) not drawn to scale

\qquad
\qquad
\qquad
\qquad
b) not drawn to scale

\qquad
\qquad
\qquad
\qquad

1) True or false? Tick the box next to each statement if it is true or cross it if it is false.
Angles a and b are equal.
$d+a=180^{\circ}$Angles b and d are equal.$c+a=180^{\circ}$
Angles a and c are equal.
\square $a+b+c+d=360^{\circ}$
2) Use what you know about vertically opposite angles, angles on a straight line and angles around a point to help you calculate each angle represented by a letter.
not drawn to scale

d)

3) True or false? Tick the box next to each statement if it is true or cross it if it
is false.

Angles a and b are equal.$d+a=180^{\circ}$Angles b and d are equal.$c+a=180^{\circ}$Angles a and c are equal.
$a+b+c+d=360^{\circ}$
2) Use what you know about vertically opposite angles, angles on a straight line and angles around a point to help you calculate each angle represented by a letter.

not drawn to scale

d)

1) Calculate the missing angles.

2) Calculate the value of each angle represented by a letter.

3) In each drawing below, there are four straight lines that meet at a point
a)

b) not drawn to scale

For each drawing, what is the fewest number of angles you need to measure with a protractor before you are able to use what you know about vertically opposite angles, angles on a straight line and angles around a point to help you calculate the value of the remaining angles? Prove it!

1) Calculate the missing angles.

2) Calculate the value of each angle represented by a letter.

3) In each drawing below, there are four straight lines that meet at a point.

b)
not drawn to scale

For each drawing, what is the fewest number of angles you need to measure with a protractor before you are able to use what you know about vertically opposite angles, angles on a straight line and angles around a point to help you calculate the value of the remaining angles? Prove it!

Vertically Opposite Angles Extra Challenge

I can find unknown angles which are vertically opposite.

Using the four given angles and your understanding of vertically opposite angles, can you calculate all the angles made by these intersecting lines?

Vertically Opposite Angles Extra Challenge Answers

Using the four given angles and your understanding of vertically opposite angles, can you calculate all the angles made by these intersecting lines?

Vertically Opposite Angles Extra Challenge

I can find unknown angles which are vertically opposite.

Using the four given angles and your understanding of vertically opposite angles, can you calculate all the angles made by these intersecting lines?

Vertically Opposite Angles Extra Challenge Answers

Using the four given angles and your understanding of vertically opposite angles, can you calculate all the angles made by these intersecting lines?

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.		
I know that vertically opposite angles are equal.		
I can find vertically opposite missing angles.		

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.		
I know that vertically opposite angles are equal.		
I can find vertically opposite missing angles.		

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.		
I know that vertically opposite angles are equal.		
I can find vertically opposite missing angles.		

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.		
I know that vertically opposite angles are equal.		
I can find vertically opposite missing angles.		

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.		
I know that vertically opposite angles are equal.		
I can find vertically opposite missing angles.		

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.

I know that vertically opposite angles are equal.

I can find vertically opposite missing angles.

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.		
I know that vertically opposite angles		
are equal.		

Maths | Vertically Opposite Angles

To recognise angles which are vertically opposite and find missing angles.		
I know that vertically opposite angles are equal.		
I can find vertically opposite missing angles.		

